If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8u^2-18u+4=0
a = 8; b = -18; c = +4;
Δ = b2-4ac
Δ = -182-4·8·4
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-14}{2*8}=\frac{4}{16} =1/4 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+14}{2*8}=\frac{32}{16} =2 $
| 6-1/3w+7/5w=4 | | 3+3x=-51 | | n+(n+12)=84 | | |3p-5|=7 | | 2x+24=32+2x-4 | | 3=n/4+2 | | 2x-8=-35 | | -8(2y+3)-12=14y-6y+4 | | k/9-7=-7 | | 2p2-9=3p | | 0.666666667x-5=7 | | 7n/9+2/9=8/9 | | 4t-3=13-t | | 1+v/6=4 | | p+6-3=-3 | | -4n-2=-10+1-6n-1 | | 36-4x=-7x | | 2x.2-25=-3 | | -2+2v=1+v | | n+(3n-1)=63 | | -b^2+11=0 | | r2+11r+30=0 | | –16t2+32t+128=0 | | 4/(3x+1)=10 | | -2p-3p=15 | | 7m-2=3m+2 | | 2y+y=1 | | 5x+15=x-10 | | 3m-5=m+9 | | -19-|s|=-22 | | 4x2+4x=3 | | 5x+1/5=2x+6/3 |